This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK # Journal of Carbohydrate Chemistry Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617200 # Synthesis of and Glycosidation by 2-Deoxy-2-Fluoro-D-Mannopyranose Tomoya Ogawa^a; Yukio Takahashi^a ^a The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, Japan **To cite this Article** Ogawa, Tomoya and Takahashi, Yukio(1983) 'Synthesis of and Glycosidation by 2-Deoxy-2-Fluoro-D-Mannopyranose', Journal of Carbohydrate Chemistry, 2: 4, 461 — 467 To link to this Article: DOI: 10.1080/07328308308057893 **URL:** http://dx.doi.org/10.1080/07328308308057893 ### PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. ### J. CARBOHYDRATE CHEMISTRY, 2(4), 461-467 (1983) #### Communication #### SYNTHESIS OF AND CLYCOSIDATION BY 2-DEOXY-2-FLUORO-D-MANNOPYRANOSE Tomoya Ogawa* and Yukio Takahashi The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351, Japan Received September 1, 1983 With the increased biochemical interests of fluorocarbohydrates, several approaches have been establised toward the synthesis of 2-deoxy-2-fluorocarbohydrates by taking advantage of the ease of the addition reaction to readily available peracetylated glycals by employing either CF₃OF, 1 F₂, 2 or XeF₂, 3 More stereochemically controlled approaches utilize the epoxide opening reaction with KHF₂ 4 or the displacement of 2-O-triflate by CsF. 5 In connection with our project on the synthesis of cell surface glycans, 6 an efficient synthetic route to 2-deoxy-2-fluoro-D-mannose 8 and its glycosyl donor is required. 2 Reallyl 10 R1=H, R2=Bn 6 R1=aliyl, R2=SO2CF3 QC14H29 OC14H29 QC14H29 <u>12</u> 13 R=Bn 14 R=H 15 R=Bn 16 R=H <u>11</u> R10 -OR² R10 18 R1 - Bn, R2 - Ac 19 R1=Bn, R2=H 20 R1=R2=H <u>17</u> 21 R1=Bn, R2=Ac Scheme 1 We describe here, first, a stereoselective synthesis of 8, which has been reported, to the best of our knowledge, only as a minor product⁷ from the addition reaction of 3,4,6-tri-0-acetyl glucal, and second, the glycosidation employing the glycosyl donor 11. Treatment of the readily available orthoester 1 with a catalytic amount of TMSOSO₂CF₃⁸ and powdered molecular sieves 4A, followed by deacetylation in NaOMe-MeOH afforded a 70% yield of 3, $[\alpha]_0$ -23.3°*, mp 89.0-90.0° (iPr₂0). Upon treatment of 3 with $(CF_3SO_2)_2O$ in pyridine was obtained a 60% yield of 4, $\delta_C(CDCl_3)$: 97.96 (C-1), 84.90 (C-2). Displacement of the triflate in $\underline{4}$ with Bu₄NF was performed in THF at 50° to give a 77% yield of 7, $[\alpha]_D$ -48.4°, mp 70.5-71.0° (iPr₂0), δ_C (CDCl₃); 97.01 (C-1, 2 J_{CF} 15.9 Hz), 86.90 (C-2, ${}^{1}J_{CF}$ 188.0 Hz), 80.70 (C-3, ${}^{2}J_{CF}$ 18.3 Hz). Hydrogenolysis of the benzyl groups of 7 with 10% Pd-C in AcOH afforded $8, 7 \quad [\alpha]_D + 27.7^\circ \quad (H_2O), \delta_C \quad (D_2O, \alpha: \beta = 2:1): 97.17 \quad (C-1\beta, \beta = 2:1)$ $^{2}J_{CF}$ 16.2 Hz), 91.18 (C-1 α , $^{2}J_{CF}$ 28.4 Hz), 91.23 (C-2 β , $^{1}J_{CF}$ 179.3 Hz), 90.26 (C-2 α , 1 J_{CF} 170.8 Hz). δ_{H} (D₂O, 60 $^{\circ}$): 5.372 (H-1 α , dd, 1.95 Hz, ${}^{3}J_{HF}$ 7.57 Hz), 4.769 (H-2 α , dt, ${}^{2}J_{HF}$ 49.1 Hz, ${}^{3}J_{HH}$ 2.20 Hz), 4.992 (H-1 β , d, ${}^{3}J_{HF}$ 20.51 Hz), 4.808 (H-2 β , dd, ${}^{2}J_{HF}$ $51.27 \text{ Hz}, ^3 \text{J}_{HH} 2.44 \text{ Hz}).$ In spite of the biochemical interests of deoxy-fluorooligosaccharides, there seems to be only one example for the glycosidation using 2-deoxy-2-fluorocarbohydrate reported by Vass ^{*}Values of $[\alpha]_D$ were measured for CHCl3 solution at 25°, unless noted otherwise. Compound with $[\alpha]_D$ recorded gave satisfactory data for elemental analyses. et al. 9 In order to examine the reactivity and the selectivity of a 2-deoxy-2-fluoro-D-mannosyl donor, we prepard the glycosyl donor 11 via 9 as follows. Allyl D-glucoside 5 was readily prepared in 61% yield from 2 in the same sequence of reactions as in the preparation of 3. Trifluoromethanesulfonylation of 5 to give 6 and subsequent replacement with F afforded a 49% yield of 9, $[\alpha]_D$ -10.9°, δ_C (CHCl₃): 97.52 (C-1, $^2J_{CF}$ 14.7 Hz), 86.90 (C-2, $^1\mathrm{J}_{\mathrm{CF}}$ 188.0Hz , 80.59 (C-3, $^2\mathrm{J}_{\mathrm{CF}}$ 18.3Hz . Deallylation with PdCl₂-AcONa-aq.AcOH¹⁰ to give <u>10</u> and subsequent treatment of <u>10</u> with [Me2N+=CHOSOC1]C1- formed in situ from SOC12 and a trace of DMF in $CH_2Cl_2^{11}$ gave the glycosyl donor 11, $[\alpha]_0$ +91.8°, mp 54.0-54.5° (iPr₂0), δ_H (CDCl₃): 6.16 (H-1, q, $^3J_{HF}$ 7.70 Hz, $^3J_{HH}$ 3.0 Hz). In order to study the stereoselectivity of the glycosidation of 11, two glycosyl acceptors 12^{12} and 17 were chosen. The glycosidation of 12 with 11 in the presence of AgOSO₂CF₃ -powdered molecular sieves 4A in Cl(CH₂)₂Cl at 20° afforded an 88% yield of a mixture of 13 and 15 in a ratio of 1:1.82. 13: $[\alpha]_D$ +38.7°, δ_C (CDCl3): 97.92 (C-1, $^2J_{CF}$ 29.3 Hz). 15: $[\alpha]_0$ -2.9°, mp 48.0-48.2° (MeOH), δ_C (CDCl₃): 99.18 (C-1, ${}^2J_{CF}$ 15.9 Hz). Deprotection of 13 and 15 by catalytic hydrogen transfer in the presence of 10% Pd-C in 10:1 MeOH-HCOOH¹³ afforded <u>14</u> and <u>16</u>, in 89 and 88% yield, respectively. 14: $[\alpha]_D$ +28.8°, mp 62.5-64.0° (MeOH-EtOAc), δ_{C} (CDCl₃): 98.02 (C-1, ${}^{2}J_{CF}$ 29.3 Hz). δ_{H} (CDCl₃): 5.008 (H-1, dd, ${}^{3}J_{HH}$ 1.50 Hz, ${}^{3}J_{HF}$ 7.32 Hz), 4.687 (H-2, d, ${}^{2}J_{HF}$ 50.05 Hz). <u>16</u>: $[\alpha]_D$ -18.4°, mp 55.0-56.0° (MeOH), δ_C (CDCl₃): 99.26 (C-1, ${}^2J_{CF}$ 14.60 Hz), δ_H (CDCl₃): 4.616 (H-1, d, ${}^3J_{HF}$ 19.29 Hz), 4.753 (H-2, dd, ${}^2J_{HF}$ 51.52 Hz, ${}^3J_{HH}$ 1.95 Hz). The glycosidation of 17 with 11 as described above afforded a 79% yield of a mixture of <u>18</u> and <u>21</u> in a ratio of 8.72: 1. <u>18</u>: $[\alpha]_{D}+15.3^{\circ}$, mp 118.5-119.0° (iPr₂0), $\delta_{\mathbb{C}}$ (CDCl₃): 102.0 (C-1a), 99.64 (C-1b, ${}^{2}J_{CF}$ 29.3 Hz). 21: $[\alpha]_{D}$ +8.3°, mp 117.5-119.0° (EtOAc-iPr₂0), δ_{C} (CDCl₃): 102.4 (C-1a), 98.31 (C-1b, ${}^{2}J_{CF}$ 15.9 Hz). Deacetylation of 18 to give 19 and subsequent deprotection of 19 by catalytic hydrogen transfer¹³ afforded 20, $[\alpha]_D$ +100.0° (H_2O) , δ_C $(D^2O, \alpha : \beta = 1 : 2)$: 98.73 $(C-1b\alpha, {}^2J_{CF} = 29.7 \text{ Hz})$, 98.64 $(C-1b\beta, {}^{2}J_{CF} 29.7 \text{ Hz}), 96.18 (C-1a\beta), 92.24 (C-1a\alpha). \delta_{H} (D_{2}O, 60^{\circ})$: 5.481 (C-1b $\alpha\beta$, ³J_{HF} 7.81 Hz, ³J_{HH} 1.71 Hz), 5.233 (H-1a α , ³J_{HH} 3.7 Hz), 4.631 (H-1a β , $^3J_{HH}$ 8.1 Hz). The obseved $^2J_{C-1,F}$ values for the synthetic samples, 14.7-16.2 Hz for β -D-manno and 28.4-29.7 Hz for α -D-manno, were in good agreement with the reported values¹⁴ of 15.8 and 29.6 Hz, respectively. And also the observed ${}^{3}J_{H-1,F}$ values 19.29-20.51 Hz and 7.32-7.81 Hz for the synthetic samples were in good agreement with the reported values¹⁵ of 20.0 and 7.5 Hz for β -D-manno and α -D-manno configurations, respectively. In conclusion, an efficient approach to the stereoselective synthesis of 2-deoxy-2-fluoro-D-mannose 8 and the glycosyl donor 11 is developed, and the preferred α -D-stereoselectivity in the glycosidation of 11 with a less reactive aglycon is demonstrated in accordance with the general trend¹⁶ in the glycoside synthesis. #### **ACKNOWLEDGEMENTS** We thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the NMR spectra, and Dr. H. Homma and his staff for the elemental analyses. We also thank Mrs. A. Takahashi for her technical assistance. #### REFERENCES - J. Adamson, A. B. Foster, L. D. Hall, and R. H. Hesse, <u>Chem. Commun.</u> 309 (1969); R. A. Dwek, P. W. Kent, P. T. Kirby, and A. Harrison, <u>Tetrahedron Lett.</u>, 2987 (1970); E. L. Albano, R. L. Tolman, and R. R. Robins, <u>Carbohydr. Res.</u>, 19, 63 (1971). - T. Ido, C.-N. Wan, J. S. Fowler, and A. P. Wolf, <u>J. Org. Chem.</u>, <u>42</u>, 2341 (1977). - W. Korytnyk and S. Valentekovic-Horvath, <u>Tetrahedron Lett.</u>, 1493 (1980); W. Korytnyk, S. Valentekovic-Horvath and C. R. Petrie III, <u>Tetrahedron</u>, <u>38</u>, 2547 (1982). - J. Pacak, J. Podesva, Z. Tocik, and M. Cerny, <u>Coll. Czech. Chem. Commun.</u>, <u>37</u>, 2589 (1972); W. A. Szarek, G. W. Hay, and M. M. Perlmutter, <u>J. Chem. Soc. Chem. Commun.</u>, 1253(1982). - S. Levy, E. Livni, D. Elmaleh, and W. Curatolo, <u>J. Chem. Soc.</u> Chem. Commun., 972 (1982). - T. Ogawa, S. Nakabayashi, and T. Kitajima, <u>Carbohydr. Res.</u>, 114, 225 (1983); T. Ogawa and T. Kaburagi, <u>Carbohydr. Res.</u>, 110, C12 (1982). - 7. J. Adamson, A. B. Foster, L. D. Hall, R. N. Johnson, and R. H. Hesse, <u>Carbohydr. Res.</u>, <u>15</u>, 351 (1970). - 8. T. Ogawa, K. Beppu, and S. Nakabayashi, <u>Carbohydr. Res.</u>, <u>93</u>, C6 (1981). - G. Vass, A. Rolland, J. Cleophax, D. Mercier, B. Quiclet, S. D. Gero, <u>J. Antibiotic</u>, <u>32</u>, 670 (1979). - T. Ogawa and S. Nakabayashi, <u>Carbohydr, Res.</u>, <u>93</u>, C1 (1981). See also ref. 6. - M. S. Newman and P. K. Sujeeth, <u>J. Org. Chem.</u>, <u>43</u>, 4367 (1978). See also ref. 6. - E. Baer and N. Z. Stanacev, <u>J. Biol. Chem.</u>, <u>240</u>, 44 (1965); M. Kates, T. H. Chan, and N. Z. Stanacev, <u>Biochemistry</u>, <u>2</u>, 394 (1963). - B. ElAmin, G. M. Anantharamaiah, G. P. Royer, and G. E. Means, J. Org. Chem., 44, 3442 (1979); V. S. Rao and A. S. Perlin, Carbohydr. Res., 83, 175 (1980); G. Brieger and T. J. Nestrick, Chem. Rev., 74, 567 (1974). - 14. V. Wray, J. Chem. Soc. Perkin II, 1599 (1976). - 15. L. Phillips and V. Wray, <u>J. Chem. Soc. (B)</u>, 1618 (1971). - H. Paulsen, <u>Angew. Chem. Int. Ed.</u>, <u>21</u>, 155 (1982).